Tom Hanisco's Publications

Homeyer, C. R., J. B. Smith, K. M. Bedka, K. P. Bowman, D. M. Wilmouth, R. Ueyama, J. M. Dean-Day, J. M. St. Clair, R. Hannun, J. Hare, A. Pandey, D. S. Sayres, T. F. Hanisco, A. E. Gordon, and E. N. Tinney, Extreme altitudes of stratospheric hydration by midlatitude convection observed during the DCOTSS field campaign. Geophys. Res. Lett.50, e2023GL104914, 2023, doi: 10.1029/2023GL104914.

Water vapor's contribution to Earth's radiative forcing is most sensitive to changes in its lower stratosphere concentration. One recognized pathway for rapid increases in stratospheric water vapor is tropopause-overshooting convection. Since this pathway has been rarely sampled, the NASA Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) field project focused on obtaining in situ...

Sayres, D.S., L. Pfister, T.F. Hanisco, E.J. Moyer, J.B. Smith, J.M. St. Clair, A.S. OBrien, M.F. Witinski, M. Legg, J. G. Anderson, Influence of Convection on the Water Isotopic Composition of the Tropical Tropopause Layer and Tropical Stratosphere, J. Geophys. Res. 115, D00J20, doi:10.1029/2009JD013100, 2010. 

We present the first in situ measurements of HDO across the tropical tropopause, obtained by the integrated cavity output spectroscopy (ICOS) and Hoxotope water isotope instruments during the Costa Rica Aura Validation Experiment (CR-AVE) and Tropical Composition, Cloud and Climate Coupling (TC4) aircraft campaigns out of Costa Rica in winter and summer, respectively. We use these data to explore...

Wilmouth, D.M., T.F. Hanisco, R.M. Stimpfle, and J.G. Anderson, Chlorine-Catalyzed Ozone Destruction: Cl Atom Production from ClOOCl Photolysis, J. Phys. CHem. A, 113, 14099-14108, doi:10.1021/JP9053204, 2009.

Recent laboratory measurements of the absorption cross sections of the ClO dimer, ClOOCl, have called into question the validity of the mechanism that describes the catalytic removal of ozone by chlorine. Here we describe direct measurements of the rate-determining step of that mechanism, the production of Cl atoms from the photolysis of ClOOCl, under laboratory conditions similar to those in the...

Sayres, D.S., E.J. Moyer, T.F. Hanisco, J.M. Clair, F.N. Keutsch, A. O’Brien, N.T. Allen, L.Lapson, J.N. Demusz, M. Rivero, T. Martin, M. Greenberg, C. Tuozzolo, G.S. Engel, J.H. Kroll, J.B. Paul, and J.G. Anderson, A New Cavity Based Absorption Instrument for Detection of Water Isotopologues in the Upper Troposphere and Lower Stratosphere, Review of Scientific Instruments, 80, 2009.

We describe here the Harvard integrated cavity output spectroscopy (ICOS) isotope instrument, a mid-IR infrared spectrometer using ICOS to make in situ measurements of the primary isotopologues of water vapor (H2O, HDO, and H218O) in the upper troposphere and lower stratosphere (UTLS). The long path length provided by ICOS provides the sensitivity and accuracy necessary to measure...

Weinstock, E. M., et al. (2009), Validation of the Harvard Lyman-α in situ water vapor instrument: Implications for the mechanisms that control stratospheric water vaporJ. Geophys. Res.114, D23301, doi:10.1029/2009JD012427.

Building on previously published details of the laboratory calibrations of the Harvard Lyman-α photofragment fluorescence hygrometer (HWV) on the NASA ER-2 and WB-57 aircraft, we describe here the validation process for HWV, which includes laboratory calibrations and intercomparisons with other Harvard water vapor instruments at water vapor mixing ratios from 0 to 10 ppmv, followed by in-...

Sayres, D. S., and Coauthors, 2009: A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere. Rev. Sci. Instrum.80, 044102, doi:10.1063/1.3117349.

We describe here the Harvard integrated cavity output spectroscopy (ICOS) isotope instrument, a mid-IR infrared spectrometer using ICOS to make in situ measurements of the primary isotopologues of water vapor (H2O, HDO, and H218O) in the upper troposphere and lower stratosphere (UTLS). The long path length provided by ICOS provides the sensitivity and accuracy necessary to measure...

J.M. St. Clair, T.F. Hanisco, E.M. Weinstock, E.J. Moyer,D.S. Sayres, F.N. Keutsch, J.H. Kroll, J.N. Demusz,N.T. Allen, J.B. Smith, J.R. Spackman, J.G. Anderson, A new photolysis laser-induced fluorescence instrument for the detection of H2O and HDO in the lower stratosphere. Sci. Instrum. 79, 064101 (2008). doi:10.1063/1.2940221.

We present a new instrument, Hoxotope, for the in situ measurement of H2O and its heavy deuterium isotopologue (HDO) in the upper troposphere and lower stratosphere aboard the NASA WB-57. Sensitive measurements of δD are accomplished through the vacuum UV photolysis of water followed by laser-induced fluorescence detection of the resultant OH and OD photofragments....

Hanisco, T. F., et al. (2007), Observations of deep convective influence on stratospheric water vapor and its isotopic compositionGeophys. Res. Lett.34, L04814, doi:10.1029/2006GL027899.

In situ observations of H2O and HDO in the midlatitude stratosphere are used to evaluate the role of convection in determining the stratospheric water budget. The observations show that water vapor in the overworld stratosphere (potential temperature > 380 K) is isotopically heavier than expected. Measurements in an airmass with anomalously high concentrations of water vapor show isotopic...

Hanisco, T. F., J. B. Smith, R. M. Stimpfle, D. M. Wilmouth, K. K. Perkins, J. R. Spackman, J. G. Anderson, D. Baumgardner, B. Gandrud, C. R. Webster, S. Dhaniyala, K. A. McKinney, and T. P. Bui, Quantifying the rate of heterogeneous processing in the Arctic polar vortex with in situ observations of OH. J. Geophys. Res.107(D20), 8278, 2002, doi:10.1029/2001JD000425.

We present simultaneous in situ observations of OH, HO2, ClONO2, HCl, and particle surface area inside a polar stratospheric cloud undergoing rapid heterogeneous processing. A steady‐state analysis constrained by in situ observations is used to show that concentrations of OH calculated during a processing event are extremely sensitive to the assumptions regarding aerosol composition and...

Hanisco, T. F., J. B. Smith, R. M. Stimpfle, D. M. Wilmouth, J. G. Anderson, E. C. Richard, and T. P. Bui, In situ observations of HO2and OH obtained on the NASA ER-2 in the high-ClO conditions of the 1999/2000 Arctic polar vortex. J. Geophys. Res.107(D20), 8283, 2002, doi:10.1029/2001JD001024.

Extensive observations of OH and HO2 obtained aboard the NASA ER‐2 inside the Arctic polar vortex during the SAGE III Ozone loss and Validation Experiment (SOLVE) provide the opportunity to identify and test interferences during the measurement of HO2 in the presence of high concentrations of ClO. In‐flight calibrations are consistent with small interferences from CH3O2 (8%) and...

Pages